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EXTENSION OF BOLTZMANN'S THEORY TO A LIQUID

Duane C. WALLACE

Los Alamos National Leboratory, Los Alamos, New Mexico 87545, USA

A theory for the nonequilibrium statistical mechanics of a liquid is presented. This theory consists of coupled
evolution equations for the one-particle momentum distribution, and for the two-particle correlntion funetion,
and it possesses the satue important properties as does Boltzmann’s theory, numely the local conservation
laws, the local h theorem, and the correct equilibrium solution,

1 INTRODUCTION

For a gas, the energy density is a statistical aver-

age of the kinetic energy of the particlea. The pressure

tensor and the energy current are also composed en-
tirely of kinetic contributicns. The important atatisti-
cal function, from which all densities and currents can
be calculated, is the one-particle momentum distribu-
tion. In 1872, Boltzmann' constructed an equation
describing the irreversible evolution of the momceatum
distabution for a noncouilibrium gas. In this equn-

tion, irteversibility arises from the collision integral,

which is a statistical represcitation of two pasdele cal-

likions.

For a liquid, the densities and currents contain, in
addition to kinetic contributions, potential contribu
tiona a8 well, due to the potentinl of interaction be-
tween liquid pasticies. The rtatiatical function which
in nevded | to ealeulate these potertinl contributions,
in the twe-particle correlation function. The Bolt;.
mnnn equation does not account for interparticle cor
relationa. Much renearch han been devoted to the ex
tension of Boltzmann's theory to dense ganes nnd o
liquida, We note the vork of Enakog, which ix dis
cusned by Hirnehfelder, Curtise, aed Dird;? the density
expannion of Dogoliubov;? the work of Cohen * ¢ of

Erxt, Haines, and Dorfrnan,? and of Résibois and

DeLeener,* all showing that the density expansion
does not converge; and the establishment of glohal
h theorems for certuin systems by Résibois,® and by
Karkheck, van Beijeren, de Schepper, and Stell.??
The nature of a liquid, which is in contrast to the
nature of a gas, is that a given particle 18 in conti-
nous interaction with its neighbors. Henee the con
cept of collisions is not approprinte for a stutisticnl
theory of a liquid. We have recently construeted n
new theory of nonequilibrinm statisticnl meehnnies
for a liquid.""!'7 In the present paper, we show that
this new theory is a logical extension of Holtzmnnn's

theory.

2. BOLTZMANN THEORY

We consider o gns of like particles, ench with minss
m. At nloeation v, nnd thine £ the one particle probn
hility deasity (the imomentum distribntion) s
S po). Note rand p represent vectors All the
mgnificart densities and current<cin the gas aie given
by the dintribution £ The particle density pir 0y,

and the fluid velocity e{r 1), nre given by

plegt) - /_f“’(r,p,f).l,,, (1

plre(r ) - / r ]'”(".p.f)'/p (AN}
m



The energy per particle, in the local center-of-mass

frame, is (! (r, ), where
PR |
prnt)e(r,) = [ L= 10 gy (a)

The pressure tensor P{!){r ¢), and the energy current
JUXr, 1), are given by well-known formulas which we
will not exhibit here.

The Boltzmann equation is an evolution equation
for the utatistical function f'(r,p,t). The irreversible
aspect of this evolution is contained in the collision in-
tegral Cir,p,t), which we will construct in a slightly
unorthodox way. At a given r,t in the gas, there are
two-particle collisions in which the particle momenta
p.p' go to p,p'. For a given phase-apace volume ele-
ment dp d}i', the transition rate is x(p, p'/p, p' )dplyy.
x(p,p'/p,p) in invariant under the interchange of p,p'
with p,p', and x(p, p'/}, J') containa two é-functions
as fartors: §(p+ p' — p — ji'), representing conservation
of momentum, and é(p? + p'? -- 7 — p'?), repreacnt-
ing conservation of energy. Because of the collisions,
particle pairs are entering, and leaving the pair dis.
tribution f(r,p, Hf V' (r,p', 1), and the net rate of

change of this pair distribution is
R(r,p,p' 1) = // [.f“’(r,fp,f)j“'(r,f;',f)
‘f“)("-P-')f(”("-l"\”
x A(p g [P i)y
Integration of this over dp’ gives the collinional rate of
change of p(r, OV fM(r p,1). But the collisionn rate of
change of p(r, 1) is 2610, no the correaprnding rate of

change of f(r p 1} in the collision integral C(r,p, 1),

given by

e C(r ) ~ /R(r.p.:".')vll". (4)

The transition rate y in simply related to the collision

crosn ection m.

The Boltzmann equation is

a
((T)_t+r_’:1”v') S r.pt) = C(r.p.t), (M

where the termn in V', is the drift termn (streaming
termn). The Doltzmann equation possesses the follow-
ing three important properties.

(a) For a genernl material, the theory of con-
tinuum mechanics expresses, in local form, the well-
known laws of conservation of mass, of linear momen-
tum, and of energy. For a gas, where the densitics and
currents are given by the one-parti<le contributions,
the Boltzmann equation yields the three loeal conser-
vation laws.

(b) For a function h(r,t), which is the A-quantity
per particle at location r and time ¢, the local & theo-

rem is

8—”“—'%{‘(’.—'” + N [ 0 )h(r 1) (6)
. +1(r,t)] = T(ryt),

whese I{r ) in the b current, and T(r,¢t) is the source

function. I(r,t) is a Linpunov functionnl, so that

L{r,t) € 0, with Z(r t) = 0 only at equilibrium.

To obtain an h theorem fron Boltzmaun's equation,

it in necannary to add some information, namely the

definition of A(r,1). TV limann's deflnition, altered to

incdude n factor of Planck's contnmt b, is WYY ety

p(r,f)h"’(r.f, - _I/ 9 pt) 'l:f(”(r.’r,l)dp‘
(7)

whete the argurnent of the log s diteasioniess. With
the definition (7), Boltzmanu's rquation yields the
local A theorem (6).

(¢) The condition X(r,t) - 0 yiclds a solution
for the equilibrivun momentum distribution f*7 p),
Taking into account the known equilibrinm values of

pov, and ¢, ad eliminating ¢ i fmvor of the inverse



temperature 3, f((,l)(p) is uniquely determined to be

the Boltzmann distribution:

M(p) = p(B/2nm)  exp [~ Bip — mu)?/2m] . (8)

3. EXTENSION TO A LIQUID

We now consider a liquid of like particles, interact-
ing through the central potential ¢(|s|), where s is the
vector separation between two particles. The probabil-
ity density for a particle at r — %a with momentun p,
and simultaneously a particle at r + s with momen-
tum p', is f(?) (" - %.!,p,r + %s.p'.t). From this, we
define the two-particle correlation function 4!

fO(r —%a,p,r +4s,0'1)
= fO(r 4o, p )/ (r +4a,p',1)
x yW(r —43,p,r +40,p'1).

To construct a aimple evolution theory including two-
particle correlation effects, we will intvoduce two ap-
proximations, which are discussed in detail in a longer
paper.!? We assume that f(!) and v(? vary by only
a small relative amount when they are tranalated
through a distance of order or less than the correla-
tion length, and we also neglect momentum correla-
tions, i.e, neglect the momentum Aependence of 4'%,
An a result of thewe approximations, the theory can be

based on the two-particle probability density

F ' ) = [, 0f O (r g D),
(9)
together with gradienta of £ and ¢'?. Here ¢'?) in

the momentum-averaged correlation funetion:
n’(r.f)g“’(r.a.f)=/ P CY VAU

% Y (r —fa,por 440, p', Odpdp’ (10)
The function ¢'¥(r,a,1) = 1 in loeal, i.e. it vamshes
when s is greater than the correlation length, and i

normalized according to

p(r,r)/[g"’(r,s.t)—lj ds=—1+a(rt), (1)

where a(r,t) represenis density fluctnuations, a(r,f) is
positive, and a(r,t) € 1 for a liquid. In many cases of
liquid theory, it ie not unreasonable toset o = Oas a
first approximation. The two-particle rontributions to
the energy and pressure, ¢2(r,t) and P?)(r, ¢) respec-

tively, are given by
() = %p(r,l)/¢(|s|)g“’(r,.1,t)d.!, (12)

PA(r 1) = —%p’(r.t)/d)'(lsl)ﬁg"‘"(m.!)d-‘ (13;
where ¢'(]a]) = dg(|s])/d]s|. From our approximations,
it follows J(r,t) = 0.

Let us next consider the irreversil' . aspect of the
evolution of a nonequilibrium liguid. This can be
described in terms of effective two-particle interac-
tions, in which two particles interact not as an isolated
pair, but as a pair imunersed in a sea of backgrownd
interactions. In such an effective two-j article inter-
action, &, p,p’' goes to &, i, ¥, aud for a given phase-
space volume element dipdj'ds, the trasition rate is
a(app' /8 P )dpdfida. yin loeal it o, &, and the de
pendence of x on r, t in suppressed fo: abbreviation,
Because of microscopic reversibility, s (s, pop! /s p')
is invarinnt under the interchange of 1+ ;) with
§,p, 0. Also \(a,p.p' /8, 5,§) contains two 5 functions
as factors: &(p + p' — ji — ji'), reprener t)ag conservation
of momentum, and é{w — &), repreact ting conaervation

of the “energy of mean foree,” where

wir,a,pp' ) = r 4 i e et (1
2m  2m e

w(r, o, 1) in the loeal potentinl of mons foree i the
nonequilibrimm liquid."''? The important point i
that, in microncopic energy conservation within the

effective interactionn, it i not the bare potentinl ¢(]a|)



which enters, but the potential of mean force
w(D(r, a,t).

Because of the interactions, particles are entering
and leaving thc phase-space volume around s, p,p/,
and the net rate of change of IO, a,p,pt) s

F(r,s,p,p',1)

= [[[ 1@ wsn8.0- 12 opr 0]

x x(s,p.p' /3,5 p')dpdp'di.
(15)

The corresponding rate of change of f(!)(r,p,t) is

F(r,p,t) = / / FOr ap.p\t)dp'ds,  (16)

and the corresponding rate of chane of the quantity

A(r, )gt¥(r,a,t) is
G(”(r,a. f) = / F(I)(r"'p'p" f)dpdp'. (amn

Finally, while the energy of mean force is conserved

microscopically, within each effective two- particle in-
teraction, the total energy must be ~onserved macro-
gccpically, and this gives an integral condition on x,

which can be put in the foria!!-1?
/ [¢(|a|) - w“’(r,s,t)] GV(r,s,t)ds =0. (18)

The extension of Boltzmann's theory to a liquid is
accoinplished by constructing two coupied evolution
equations, one for f1)(r, p,t) and one for g'¥(r o, t).

These equations arc:

(19)

pi(rit) (% +u(rt) Ty ta Toa(rh) v.) PLITNY
= GM(r,a1)
£ 2
In (i9). L(r,t) ia the mean force on a particle at r.t,
due to interactions with the msrounding hquid parti.

cles, anel in given by

plr,OL(r.t) = =, - P (r o). (21)

In (20), the term in ¥, is due to the drift together of
particle pairs, and the term in V, is due to the drift
apart of particle pairs.

The coupled equations {19) and {20) possess the
same important properties as does the Boltzmann
equation, as noted in (a)-(¢) below,

(a) When the energy, pressure, and energy current
are given by the sum of one- and two-particle contri-
butions, then the local equations for conservation of
particles, of liner momentum, and of energy follow di-
rectly from (19) and (20).

(b) To prove an h theorem, we set

A(r t) = AW (r ) + A P(r,t),
where hl!)(r,t) is the Boltzmann form (7), and

h)(r, 1) in the nonequilibrium extension of our liquid

correlational entropy,'3:'4

h(”(r,f) = 1-‘p(r'.!)-/.q“‘(_r‘.c,f) tn y('”(r,s.t)d.!.
| (22)
As a result of our approximations, S 1) = 0. Then
the local A theorew, equation (6), fillows from the
liquid evolution equations (1%) and (2.),
(¢) The equilibrinm solution, obtained by setting,
L(r,t) = 0, givea again the Boltzmann expressicn (8)

for ft(,”(p). and also gives
M, L) o
go () = exp|—puy” (||, (23)

where u-:,“(lal) in the equilibirin evaluation of the o
tential of mean foree, This s the correet equilibrinm
expreasion for the correlation function g{¥(s).

An a finnl note, it hins been shown that, for & near
equilibrivin situation, our statistieal evolution theory
reproduces precisely the irreversible thermodynamies

of & viscous heat -condueting hguid.'?
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